Первое зарегистрированное наступление ледников произошло еще в докембрии, затем оно повторилось в пермский период, захватив юг планеты. В нижнем мелу начали обособляться климатические пояса, возникла широтная зональность климата. В третичное время снова появились ледники (Гюнц); в четвертичном периоде было три ледниковых эпохи: миндель, рисс, вюрм.

При образовании мощного ледяного покрова происходило существенное снижение уровня океана. В межледниковые эпохи уровень повышался.

Важным фактором эволюции биосферы, в особенности фактором, способствующим увеличению многообразия живого компонента, было расщепление двух суперконтинентов Лауразии и Гондваны на отдельные материки. Расщепление Лауразии на Северную Америку, Гренландию и Евразию, а Гондваны на Южную Америку, Африку, Индию, Австралию и Антарктиду началось в триасе, однако эффективный разрыв обнаружился лишь в меловом периоде. Такого рода преобразование суши, конечно, сказывалось на характере вращения планеты вокруг оси, на атмосферной циркуляции, особенностях морских течений. Все это, в свою очередь, отражалось на климате.

Органический мир реагировал на подобные преобразования поверхности планеты распространением покрытосеменных растений, изменением фауны рептилий, усилением видообразования среди млекопитающих.

Таким образом, среда биосферы не оставалась постоянной. В начальные моменты ее эволюции эти изменения, по-видимому, обусловили саму возможность развития материи в направлении жизни. В периоды критических ситуаций подобные изменения, как уже говорилось во второй главе, приводили к переоценке приспособленности различных групп организмов, что сопровождалось вымиранием одних и усиленным развитием других. Иначе говоря, перемены в организации абиогенной среды неизбежно отражались на организованности биосферы, способствуя повышению ее устойчивости. В конце концов это привело к тому, что главным фактором эволюции биосферы стала сама жизнь.

Ведущая роль жизнедеятельности организмов особенно наглядно обнаруживается с момента возникновения фотосинтеза. Восстановительная атмосфера преобразуется в окислительную, появляется озоновый экран. Из придатка газов атмосферы жизнь становится регулятором ее газового состава, в частности, регулятором баланса кислорода и углекислоты. Это все в большей степени начинает сказываться на температурном режиме поверхности Земли: снижение содержания углекислоты ведет к выхолаживанию, повышение — к подъему температуры.

Завоевание суши сопровождается существенным преобразованием верхнего слоя атмосферы — образованием почвы, играющей важную роль в развитии растительного покрова. Широкое расселение организмов по поверхности суши и в океане обеспечило возможность сохранения жизни вопреки влиянию космоса и геологическим преобразованиям наружной оболочки планеты.

В настоящее время главным фактором, определяющим дальнейшее направление эволюции биосферы, становится человеческая деятельность.

Говоря коротко, в ходе развития биосферы происходит смена трех категорий ведущих факторов: взаимодействие абиогенных веществ и процессов, взаимодействие организмов (дарвиновская борьба за существование), социальные взаимодействия людей в процессе производства.

Поскольку современная биосфера сформировалась в основном под воздействием биотических факторов (дарвиновская борьба за существование), особое значение для понимания ее эволюции приобретают исследования факторов эволюции органического мира.

Ламарк и Дарвин

На вопрос о том, какие факторы обусловливают развитие жизни, смену ее форм, ведущую к прогрессу, различные исследователи отвечали по-разному. Одни, вслед за автором первой теории эволюции знаменитым французским ученым Ж. Ламарком, в качестве главных эволюционных факторов называют врожденную тенденцию к самосовершенствованию — фактор явно нематериальной природы — и приспособление к среде путем наследования приобретенных при жизни признаков.

Факты неравномерности в развитии разных видов, частые случаи вымирания не только отдельных видов, но и более крупных таксонов (родов, семейств, отрядов, классов) противоречат подобным представлениям. В самом деле, если свойством живого является прогрессивное совершенствование организации, почему это свойство не проявляется у всей живых существ? Вторая составная часть теории Ламарка — учение о наследовании приобретенных при жизни признаков — довольно скоро была отвергнута критически мыслящими учеными, так как противоречила знаниям о механизме наследования.

Другие ученые, последователи Ч. Дарвина, особое значение придают изменчивости, наследственности, борьбе за существование и естественному отбору, полностью отвергая факторы нематериального порядка. В итоге работ этой группы исследователей накоплен огромный фактический материал, позволяющий выяснить роль различных явлений в эволюции гораздо более полно, чем это было сделано во времена Дарвина. В монографиях И. И. Шмальгаузена (1938, 1939, 1946, 1958), Дж. Хаксли (1963), Т. Добжанского (1953, 1970), Н. П. Дубинина (1966), Н. В. Тимофеева-Ресовского, Н. Н. Воронцова, А. В. Яблокова (1969), К. М. Завадского (1968), Э. Майра (1974), Е. Б. Форда (1975), в сборнике «Современные проблемы эволюционной теории», а также в других книгах и статьях детальному анализу подвергнут фактический материал, накопленный сторонниками дарвиновского объяснения эволюции.

Американскому генетику С. Райту (1931) принадлежит первая попытка количественной оценки значения в эволюции изменчивости, величины популяции, степени изоляции, роли отбора и ряда других эволюционных факторов. Ученый пришел к выводу о необходимости их совокупного действия. К аналогичному заключению пришло большинство исследователей, пытающихся решать проблему эволюции органического мира с дарвиновских позиций.

Лагерь дарвинистов не был однородным. В частности, начиная с теоретических статей А. Вейсмана, стало развиваться течение неодарвинизма, представители которого сводили роль среды до роли сортировщика возникающих независимо от нее наследственных изменений.

Огромный вклад в развитие дарвиновской концепции эволюции внесла генетика. Интересно, что в первые годы своего бурного развития генетика оказалась в лагере антидарвинизма. Лишь в конце 20 — начале 30-х годов С. С. Четвериков в нашей стране, Р. Фишер, Д. Холдейн в Англии и С. Райт в США пришли к выводу, что генетика не только не противоречит дарвинизму, но может служить ему надежным фундаментом. Из этих работ развилось особое направление исследований, получившее название генетической теории естественного отбора или учения о микроэволюции. Под микроэволюцией понимаются генетические процессы, происходящие внутри вида, завершающиеся образованием разновидностей, а затем и новых видов. Главные факторы микроэволюции — наследственная изменчивость и естественный отбор.

Категории внутривидовой изменчивости

Из представлений о генотипе и фенотипе следует, что существуют три основные категории внутривидовой изменчивости.

1. Генотипическая изменчивость — в основном изменчивость ДНК. Ее источник — мутации. Так называют стойкие, передающиеся из поколения в поколение изменения генов или перестройки хромосом и хромосомных комплексов. Различные генные мутации могут при скрещиваниях комбинироваться между собой, увеличивая размах генотипической изменчивости. Вслед за пионерскими работами С. С. Четверикова (1926), обнаружившего в дикой популяции мух дрозофил огромное наследственное разнообразие, многочисленные исследователи показали, что это не исключительный случай, а общебиологическое явление. Все изученные дикие виды растений и животных оказались буквально насыщенными мутационными изменениями генов. Электрофоретическое разделение близких форм белков позволило Р. Левонтину, Дж. Хабби (1966) и их многочисленным последователям обнаружить в популяциях различных организмов большое разнообразие ферментативных белков, также свидетельствующее об огромном внутривидовом наследственном полиморфизме. Наследственное многообразие диких популяций организмов — хорошо установленный факт.